A SECONDARY SOURCE
Electricity is at the heart of many modern technologies, being used for:
--Electric power where electric current is used to energise equipment;
--Electronics which deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies.
THE SCIENCE OF ELECTRICITY
In order to understand how electric charge moves from one atom to another, we need to know something about atoms. Everything in the universe is made of atoms—every star, every tree, every animal. The human body is made of atoms. Air and water are, too. Atoms are the building blocks of the universe. Atoms are so small that millions of them would fit on the head of a pin.
HOW ELECTRICITY IS GENERATED
Electricity is most often generated at a power plant by electromechanical generators, primarily driven by heat engines fueled by combustion or nuclear fission but also by other means such as the kinetic energy of flowing water and wind. Other energy sources include solar photovoltaics and geothermal power.
THE TRANSFORMER - MOVING ELECTRICITY
Transformers help improve safety and efficiency of power systems by raising and lowering voltage levels as and when needed. They are used in a wide range of residential and industrial applications, primarily and perhaps most importantly in the distribution and regulation of power across long distances.
The electricity produced by a generator travels along cables to a transformer, which changes electricity from low voltage to high voltage. Electricity can be moved long distances more efficiently using high voltage. Transmission lines are used to carry the electricity to a substation. Substations have transformers that change the high voltage electricity into lower voltage electricity. From the substation, distribution lines carry the electricity to homes, offices and factories, which require low voltage electricity.
MEASURING ELECTRICITY
Electricity is measured in units of power called watts. It was named to honor James Watt, the inventor of the steam engine. One watt is a very small amount of power. It would require nearly 750 watts to equal one horsepower. A kilowatt represents 1,000 watts. A kilowatthour (kWh) is equal to the energy of 1,000 watts working for one hour. The amount of electricity a power plant generates or a customer uses over a period of time is measured in kilowatthours (kWh). Kilowatthours are determined by multiplying the number of kW's required by the number of hours of use.
CORRECTING POWER FACTOR
Scan to WhatsApp: